化(谓词)、运算(联结词)、运算律(主要增加了量词等值式)、等值演算、标准型(前束范式)、应用(判定问题、证明等值式、实际应用、谓词逻辑推理理论等)。 当然,谓词逻辑内容远比命题逻辑深刻和复杂,在本科的离散数学中,这部分内容只能算是谓词逻辑的基础了。 二、集合论部分的数学本质 通常离散数学中集合论部分也包含两章:(11/22)下页上页返回列表 返回